
ICASE 
DISCRETE APPROXIMATION METHODS 

FOR PARAMETER IDENTIFICATION IN DELAY SYSTEMS 

I. Gary Rosen 

Report No. 81-36 

November 9, 1981 

<NASA-CR-165796)  DISCRETE APPROXTMATION N89-71369 
METHODS FOR PARAMETFR XOENTIFTCATION TN 
OELAY SYSTEMS ( I C A S E )  69 p 

Unclas 
00 /64  0224373 

I 

I N S T I T U T E  FOR COMPUTER APPLICATIONS’  I N  SCIENCE AND ENGINEERING 

NASA Langley Research Center, Hampton, V i r g i n i a  23665 

Operated by t he  
n 

U N I V E R S I T I E S  SPACE RESEARCH ASSOCIATION 



DISCRETE APPROXIMATION METHODS FOR PARAMETER 

IDENTIFICATION I N  DELAY SYSTEMS 

I. G. Rosen 

Vepaxtmevllt 06 Matlz-u, Bowdoin CoUege 
Bhunsl.crick, MATNE 04011 

ABSTRACT 

We cons t ruc t  approximation schemes f o r  parameter i d e n t i f i c a t i o n  

problems i n  which t h e  governing state equat ion is  a l i n e a r  f u n c t i o n a l  

d i f f e r e n t i a l  equat ion  of r e t a rded  type.  The b a s i s  of t h e  schemes i s  t h e  

replacement of t h e  parameter i d e n t i f i c a t i o n  problem having an  i n f i n i t e  

dimensional state equat ion by a sequence of approximating parameter 

i d e n t i f i c a t i o n  problems i n  which the  s t a t e s  are given by f i n i t e  dimensional 

d i s c r e t e  d i f f e r e n c e  equat ions.  

us ing  l i n e a r  semigroup theory and r a t i o n a l  func t ion  approximations t o  t h e  

exponent ia l .  S u f f i c i e n t  condi t ions are given f o r  t h e  convergence of solu-  

t i o n s  t o  t h e  approximating problems, which can be  obtained us ing  convent ional  

methods, t o  s o l u t i o n s  t o  t h e  o r i g i n a l  parameter i d e n t i f i c a t i o n  problem. 

F i n i t e  d i f f e r e n c e  and s p l i n e  based schemes us ing  Pad6 

approximations t o  t h e  exponent ia l  are cons t ruc ted  and shown t o  s a t i s f y  t h e  

s u f f i c i e n t  condi t ions  f o r  convergence. 

r e s u l t s  obtained through t h e  app l i ca t ion  of t h e  schemes t o  several examples 

is included. 

The d i f f e r e n c e  equat ions  are cons t ruc ted  

r a t i o n a l  func t ion  

A d i scuss ion  and a n a l y s i s  of numerical  
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1. Introduction 

The purpose of this paper is the investigation of approximation methods 

for the identification of parameters in control systems where the state 

equation is a linear retarded functional differential equation (LRFDE).  

The parameters which we are interested in being able to estimate include 

system coefficients, initial conditions and the delays themselves. The 

methods which we shall discuss are based upon the discrete approximation 

framework for the integration of LRFDE initial value problems developed 

in r27] - and [28]. The approach we take is to first replace the LRFDE 

which governs the dynamics of the system by an equivalent abstract evolu- 

tion equation set in an infinite dimensionalHilbert space. The abstract 

evolution equation is then approximated by a finite dimensional discrete 

difference equation. This in turn leads to a totally discrete finite 

dimensional approximating parameter identification problem which can then 

be solved through the use of standard techniques (see for instance [24]) 

and software packages which are readily available. That the solutions to 

these approximating problems in some sense approximate solutions to the 

original parameter identification problem is the primary result discussed 

in this paper. 

A s  is pointed out in [7] very little regarding the parameter identifica- 

tion problem for delay systems (PIDDS) appears in the literature. 

especially true for the case in which the delays are among the parameters 

to be identified. More recently, however, research in this area has been 

undertaken. 

framewcrk which had previcusly been deve1cped to solve optimal control 

problems governed by delay differential systems [l] , [ 41 , [ 51, 

[12], [17], [22] so as to be applicable to the P I D D S  as well. Their 

This is 

Banks, Burns and Cliff [ 71 have extended the approximation 

[ 91 
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approach is based upon semi-discrete methods (i.e. those methods in which 

the LEWDE state equation is replaced by an approximating ordinary differential 

equation) for the integration of the delay differential equation which 

governs the dynamics of the system. 

authors rely heavily upon an abstract formulation of the problem which 

permits the use of linear semigroup theory and the associated approximation 

results which have been developed for application in such a setting. Their 

approximation framework is applicable to an extremely wide class of problems, 

includes methods having an arbitrarily high order of convergence and is 

capable of identifying the delays which appear in the state equation. 

The convergence arguments given by the 

Banks in [ 2 ] develops spline based semi-discrete approximation schemes 

which are applicable to PIDDS in which the delays are not among the param- 

eters to be estimated and in which the state equation is a nonlinear delay 

system satisfying global Lipschitz and differentiability conditions. 

an equivalent abstract formulation of the problem is employed, in this 

treatment, the author has avoided the use of semigroup theory entirely. 

Instead, the convergence of the approximation schemes is argued via the 

dissipativeness of the nonlinear operators involved and the Gronwall 

inequality. In [8] and [14] the ideas discussed in [2]  

extended so as to be applicable to problems in which the delays are to be 

identified as well. 

While 

are further 

In addition to the construction of approximation schemes, a discussion 

of modeling problems arising in physiology, enzyme kinetics and unsteady 

aerodynamics which involve parameter identification and control for delay 

systems can be found in [3] and [7] . 
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The framework which we shall develop is closely related to the ideas 

contained in [7]. 

upon the same abstract formulation, apply many of the same functional 

analytic techniques to argue convergence and in fact, incorporate the 

same state discretizations as those discussed in [7] .  The primary dif- 

ference in the two approaches, however, is that our methods result in a 

complete discretization of the problem and hence require no further 

approximation when implemented. The methods included in our framework are 

capable of identifying delays and the integration schemes which they rely 

upon may be constructed with an arbitrarily high order of convergence. A 

detailed comparison of the performance of the semi-discrete schemes 

developed in [7] and totally discrete schemes similar to those which will 

be discussed here when applied to parameter identification problems in 

which the delays themselves are not among the parameters to be estimated 

can be found in [ll]. 

We treat essentially the same class of problems, rely 

An alternative treatment of the problem of approximating solutions to 

the PIDDS which is also based upon discrete approximation via difference 

equations is given by Burns and Hirsch in 1131. 

a somewhat more straightforward approach by studying a specific scheme 

(as opposed to developing an approximation framework as is done in [7] 

and will be done here) which can be applied to PIDDS in which the LRFDE 

contains a single discrete delay term only. 

and those discussed in [7] are capable of handling equations which contain 

multiple discrete delay terms as well as a distributed delay term). 

approximating difference equation is derived via the modification of 

standard numerical integration schemes for ordinary differential equations 

(i.e. Euler's method, fourth order Runge, Kutta, etc.) so as to be applica- 

ble to delay differential systems. 

These authors have taken 

(The schemes developed here 

The 

The authors are able to argue first 
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order convergence for the Euler based scheme directly and hence can avoid 

the necessity for a functional analytic formulation of the problem. 

Computational evidence supporting the feasibility of extending these ideas 

to higher order schemes is also provided. However, the authors point out 

that the possibility of extending the relevant convergence arguments is 

uncertain. The Burns and Hirsch paper also addresses the difficulties 

which can arise in the construction of approximation schemes for PIDDS 

in which the delays are to be identified due to the fact that solutions 

to delay differential systems may not be smooth with respect to the delays. 

This can pose problems since most standard optimization packages require 

differentiability with respect to the parameters. 

Although it does not concern itself with the PIDDS directly, the work 

of Banks and Kunisch [lo] should also be included in this historical outline. 

In this paper the authors treat parameter identification problems in which 

the governing state equations are semi-linear parabolic or hyperbolic 

partial differential equations. The approach that they take is similar 

to the one that is taken in [i’]. Indeed, the infinite dimensional identi- 

fication problem is replaced by an equivalent abstract formulation which 

is then used to develop finite dimensional semi-discrete approximation 

schemes. In a similar manner, the totally discrete schemes which will be 

developed below could easily be modified so as to be applicable to 

parameter identification problems with partial differential state equations. 

We conclude this section with a brief outline of our presentation. 

Section 2 we state the PIDDS and show that it can be reformulated as an 

equivalent parameter identification problem in which the state equation is 

an abstract evolution equation set in an infinite dimensional Hilbert space. 

In Section 3 we establish approximation results for abstract evolution 

In 
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equations while in Section 4 we use these results to construct the approxi- 

mating parameter identification problems.and to show that under the appro- 

priate hypotheses, solutions to the approximating problems converge to 

solutions to the PIDDS. In Section 5 we construct actual approximation 

schemes which satisfy the hypotheses and conditions necessary for conver- 

gence, while in Section 6 we discuss and analyze numerical results obtained 

through the application of these schemes to several examples. 

The notation we employ is, for the most part, standard. The symbol 

is used to denote the space of n square matrices. We denote the nxn L 

space of functions defined on (a,b) with range in Rn and p continuous 

derivatives by C;(a,b) . 
and the space of continuous functions on (a,b) with range in 

denoted by P Cn(a,b) and Cn(a,b) respectively. The Lebesgue spaces 

of R" valued functions on (a,b) are denoted by Ln(a,b) while the 

Sobolev spaces of functions @ with @ (m-l) absolutely continuous and 

The space of piecewise continuous functions 

Rn are 

P 

@(m) in L;(a,b) are denoted by $,p(a,b) . For a function 0 6 w t 2  (a,b) 
we shall use the notations D@ and 4 interchangeably to denote the 
derivative of @ . Finally for a linear operator T , the symbols D(T) 

and R(T) are used to denote the domain of T and the range of T 

respectively. 

2. The PIDDS and its Abstract Formulation 

In this section we formulate the parameter identification problem 

for delay systems and show that it has an equivalent formulation, whereby 

the dynamics of the governing control system in the form of an LRFDE 

are replaced by an abstract evolution equation set in an infinite 

dimensional Hilbert space. Since the PIDDS and the associated approximation 
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schemes which we shall develop are closely related to the problem and schemes 

discussed by Banks, Burns and Cliff [7] the reader is instructed to note 

the similarities which exist between the material and notation to follow 

in this section and that which is contained in sections 2 and 2.1 of [7]. 

We begin with the definition of the admissible initial data/parameter 

set and a formal statement of the PIDDS. Let r > 0 and L? a compact 

convex subset of R’ be given. Define the compact convex set Q C R’+’ 

by QERxff where 

ff E{h=(rl,r2..rvER V I O < r i  5 ri+l 5 r ,  i=l,2..v-l) . - 

In addition let S be a compact convex subset of Rn X Li (-r,O) and define 

to be the admissible initial data/parameter set. 

we have been provided with an input/output pair 

We further assume that 

(u,c) E. PCm(O,T)X CR (0,T) 

for some T > O .  We refer to (u,<) as an input/output pair since it is 

assumed that if given input 

identified produces output 

uf PCm(O,T) the physical system to be 

< E C’(0,T). 
With the above definitions in hand, we can state the PIDDS: 

(PIDDS): 

T > O ,  find Y = (rl ,$ ,q - (q ,4 ,a ,h ) € r which minimizes 

Given an input/output pair (u,c) € PCm(O,T) X C R (0,T) for some 
* * * *  * * * *  

2 

w2 I 
T 

subject to 
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(2.2) i(t) = L(q)xt t B(a)u(t) t € [O,T] 

where for each a C R  , B(a), C ( a )  and D(a) are nxm, Rxn. and Rxm matrices 

respectively, I I j = 1,2 , 3 represent appropriately weighted (applica- 

tion dependent) norms on 

and the notation y ( - ;  y, u) is employed in order to exhibit the explicit 

depeiidence of the outprrt j ;  of the theoretlc~l system 0;1 the initial 

conditions and parameter values y and the given input u. For each 

denotes the function 8 +- x(t+8)-rl 8 5  0 j R 
R , xt 

q = (a,h) = (a,rlyr2 . rv) € Q the operator L(q): L;(-r,O)-+Rn is 

assumed to be of the form 

with ro-O and where for each a 6 R  Ai(cl) i=O,1,2,. . . , v  are nxn 

matrices and 8 -f K(a,8) is an nxn matrix valued function in 

L2( (-r,O), Lnxn) . It is assumed that Ai(a) i = 0,1,2,. . ,V B(.a) ,  C(a),  

D(a) , K ( a ,  .) are continuous in a. 

Before we go on to discuss the parameter identification problem, 

let us take a moment to consider the LRFDE initial value problem given 

by (2.2) (2.3). Given y = (q,Cp,q) E r ,  a solution to the initial 

value problem is a function x: [-r,T] +Rn such that x E Wn (O,T), x 

satisfies equation (2.2) almost everywhere on [O,T], x ( 0 )  = 0 ,  xo = C p .  

Standard arguments [24] can be used to demonstrate that for each 

192 

y E  r 
(2.2) (2.3) has a unique solution which depends continuously upon y €  r 
and the non-homogeneous term u (as an element of L2(0,T).). The m 
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no ta t ion  x ( t ; y , u )  (and x (y ,u) )  w i l l  be used t o  denote t h i s  unique 

so lu t ion  (and its p a s t  h i s t o r y  on [ t - r , t ] )  t o  (2.2) (2.3) corresponding 

t o  a p a r t i c u l a r  choice of y E r  and uELY(0,T). 

t 

Remark: 

least squares  payoff func t iona l  of t h e  form given i n  (2.1) f o r  t he  PIDDS 

s ince  i n  ac tua l  p r a c t i c e  i t  i s  usua l ly  t h e  case  t h a t  f o r  a given inpu t  

u ,  output can only be measured a t  d i s c r e t e  times O < _ t O < t l  ... < tm T.  

I n  t h i s  instance a more appropr ia te  choice f o r  a payoff f u n c t i o n a l  would 

be the  one used i n  [7] which is given by 

One might be tempted t o  ques t ion  t h e  v a l i d i t y  of choosing a 

where t h e  (5 Im are the  given d i s c r e t e  output  observa t ions  obtained 
j j = o  

from the  a c t u a l  system which is  t o  be i d e n t i f i e d .  Oddly enough, i t  is t h e  

d i s c r e t e  nature  of the  approximation schemes t o  be d iscussed  which neces- 

s i t a t e s t h e u s e  of t h e  d i s t r i b u t e d  payoff f u n c t i o n a l  given by (2.1). How- 

ever ,  t h i s  r e s t r i c t i o n  can be circumvented v i a  t h e  use  of an i n t e r p o l a t i o n  

scheme appl ied e i t h e r  t o  t h e  observa t iona l  d a t a  provided i n  order  t o  

generate  a continuous observa t ion  o r  t o  t h e  d i s c r e t e  II 
? ( e )  € C (0,T) 

output  generated by t h e  d i f f e rence  equat ion based approximation schemes. 

The la t ter  approach is t he  one which is employed i n  [13] i n  order  t o  over- 

come t h i s  very same problem. 

We next  show t h a t  t he  PIDDS has an equiva len t  formulat ion a8 a 

. 

, 

parameter i d e n t i f i c a t i o n  problem i n  which the  governing state equat ion 

is given by an a b s t r a c t  evolu t ion  equat ion set i n  t h e  H i l b e r t  space 2 

given by 
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n n  Z E R  XL2(-ryO) . 

with  inner  product 

The quan t i ty  r which appears  i n  the d e f i n i t i o n  of t h e  space Z is  as 

had been def ined  previously.  For q =  (a ,h)  E Q and (n,$) t Z w e  

d e f i n e  the  parameterized family of o p e r a t o r s  S ( t ; q ) :  Z + Z  f o r  t > _  0 by 

where x(. ,( l l ,$,q),O) denotes  the unique s o l u t i o n  t o  (2.2)  (2.3) 

corresponding t o  qE Q , ( r l , $ ) E  Z and u - 0 .  In l i g h t  of t he  ex i s t ence ,  

uniqueness and continuous dependence r e s u l t s  f o r  s o l u t i o n s  t o  t h e  i n i t i a l  

va lue  problem (2 .2 )  ( 2 . 3 )  discussed earlier, i t  is  n o t  d i f f i c u l t  t o  show 

t h a t  f o r  each q E Q t h e  opera tors  {S( t ;q ) :  t 2 0 )  form a C o  semigroup 

of bounded l i n e a r  ope ra to r s  on Z .  Furthermore, f o r  each q E  Q t h e  

i n f i n i t e s i m a l  genera tor  * ( q ) :  ~ ( A ( q ) l )  C Z + Z  of the  semigroup and i t s  

domain of d e f i n i t i o n  (which i s  independent of q )  can be ca l cu la t ed .  

They are given by 

. 
Turning our  a t t e n t i o n  next  t o  t h e  non-homogeneous equat ion ,  f o r  each 

aE R w e  d e f i n e  t h e  opera tor  G(0) :  R m + Z  by ; ( a )u=  (B(a)u,O) and 

cons ider  
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m 0 <_ t 5 T f o r  each y = (q ,@,q)  = (rl,@,a,h) E r and u 6 L2(0,T) Using 

s tandard  results from l i n e a r  semigroup theory  [20] i t  i s  e a s i l y  v e r i f i e d  

t h a t  t h e  expression f o r  z given i n  (2.5)  i s  w e l l  def ined  and cont inuous 

i n  t . Furthermore, under t h e  somewhat more r e s t r i c t i v e  cond i t ions  t h a t  

(q,$) E I? 

t o  t h e  i n i t i a l  va lue  problem i n  Z given by 

and u E Cm(O,T) w e  have t h a t  (2 .5)  is t h e  unique s t rong  s o l u t i o n  1 

( 2 . 6 )  i ( t )  = A(q)z( t )  + i ( a ) u ( t )  

It can be shown (see 141,  [SI) t h a t  under t h e  same cond i t ions  

is a s t rong  so lu t ion  t o  t h e  i n i t i a l  va lue  problem given by (2.6) (2.7)  

as w e l l .  It therefore  must fo l low t h a t  z ( t )  and w( t )  co inc ide  f o r  

O L t < T .  By making u s e  of s tandard  d e n s i t y  and continuous dependence 

arguments the equivalence of z and w can be extended so as t o  hold 

f o r  a l l  (q,@) E Z and uE LY(0,T) . W e  s ta te  t h i s  conclusion i n  t h e  

form of a theorem. 

Theorem 2.1 L e t  x ( * ; y , u )  denote t h e  unique s o l u t i o n  t o  t h e  LRFDE 

i n i t i a l  va lue  problem (2.2) (2 .3)  corresponding t o  y E I' and uE L;(O,T) . 
Then f o r  0 1. t 5 T w e  have 
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. 

* 

In the light of Theorem 2 . 1  above, the equivalence which exists between 

solutions to the LRFDE initial value problem (2.2) (2.3) and the Z 

valued function given by expression (2.5) permits the reformulation of 

the PIDDS as an equivalent (1-1 correspondence between solutions) parameter 

identification problem in which the governing state equation is now given 

by (2.5). Indeed, if we define for each a E 52 the operator C(a) : Z + RR 

by $ ( a )  (TI,@) = C(a)rl 

abstract parameter identification problem. 

* 

then the PIDDS is equivalent to the following 

given by (2.1) subject to 

( 2 . 9 )  y(t) = c(a)z(t) + D(a)u(t) t E [o,TJ . 

The fact that there exists a 1-1 correspondence between solutions to the 

APIDDS above and solutions to the PIDDS forms the basis for the approxima- 

tion schemes which we construct in the succeeding sections. 

shall obtain approximate solutions to the PIDDS by constructing convergent 

approximation schemes which are applicable to the APIDDS and which are 

based upon finite dimensional difference equation approximation of the 

state equation given by (2.8). 

Indeed, we 
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3 .  Approximation Results for the Abstract State Equation 

Fundamental to our approximation schemes for the PIDDS is the 

construction of convergent finite dimensional discrete approximation 

schemes forthe state equation given by (2.8). Indeed, the approach we 

take is to replace the APIDDS by a parameter identification problem in 

which the governing state equation is now a finite dimensional linear non- 

homogeneous difference equation which depends upon q E Q . For each 

q E Q , the solutions to these difference equations will, in some sense, 

approximate the solutions of (2.8). If we let N represent the degree 

of approximation, and if the 

yN , an element in the admissible initial data/parameter set 

minimizes a discrete least squares payoff functional which approximates 

(2.11, then we shall see that the compactness of r and the convergence 

Nth approximating problem is solved for 

r which 
* 

of the state approximation are sufficient to guarantee the existence of I * * * * * 
a subsequence {y 1 of {y,) and a y € I '  such that y -t y as 

* Nk Nk 
k+m with y a solution to the APIDDS. In the light of the equivalence 

* * * * * 
a subsequence {y 1 of {y,) and a y € I '  such that y -t y as 

* Nk Nk 
k+m with y a solution to the APIDDS. In the light of the equivalence 

* 
established in Section 2, it then must necessarily follow that y is a 

solution to the PIDDS as well. 

The above ideas will be made precise in Section 4 .  In this section, 

however, we shall concentrate exclusively on the abstract approximation 

results which are fundamental to the construction of convergent approxima- 

tions to the state equation. These approximation results can be considered 

to be discrete analogs of the well known Trotter-Kat0 Theorem [20] which is 

frequently employed to establish the convergence of semi-discrete approxima- 

tions to semigroups of operators. 

prove below are quite similar to results appearing in [28], a direct applica- 

tion of the treatment in [28] to establish the convergence of the state 

Although the theorems we shall state and 

. 
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approximations for the PIDDS is not possible. This is a consequence of 

the fact that since the delays can appear among the unknown parameters, 

the largest delay, r which plays a crucial role in our formulation, 

may no longer remain fixed with respect to the degree of approximation. 
V Y  

In what is to follow we shall employ the following conventions. 

For a rational function of a complex variable 

the degree of 

For T:D(T) C H + H  a Linear transformation on a Hilbert space H we say 

T E G ( M , B )  if T is the infinitesimal generator of a Co semigroup of 

operators {T(t): t 2 0 )  satisfying IT(t) I (MeBt . Furthermore, for 

A i  p ( T )  , the resolvent set of T ,  we denote the resolvent of T ,  

( A I  - T ) - l  by R ~ ( T )  . 

r(z)=p(z)/q(z) we denote 

r(z) =degree of p(z) - degree of q ( z )  by degr(z). 

For T € G ( M , B )  and X E p v )  , using standard results from the theory 

of semigroups of operators (see [28]) the following two bounds which are 

employed frequently below can be established: 

(3.1) 

We formulate our approximation framework in the same general setting 

as the one used in [7]. Let (Z,<- , *>) ,  (ZN,<*,->N) N=1,2 ... be Hilbert 

spaces with norms I *  1 and 1 .  I respectively. For each N = 1,2.. . let 

XN be a closed subspace of ZN and let llN: Z N +  XN be the orthogonal 

projection of ZN onto XN with respect to the < o , . > ~  inner product. 

Let I N : Z + Z N  be a mapping which is onto ZN and which satisfies 

N 
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l zNzlN 5 I z l  for each z E Z . Finally, we define PN: Z+XN by P N = R N I N ,  

and note that IPNz I <_ I z I  for each z E Z . 
N 

Our basic approximation result is given in Theorem 3.1 below. The 

proof of Theorem 3.1 relies heavily upon the following lemma which is due 

to Hersh and Kat0 [18]. 

is stated here can be found in p 8 ] .  

The proof of Lemma 3.1 in the form in which it 

Lemma 3.1 Suppose 

(1) T 6 G(M,B) is the infinitesimal generator bf the C semigroup 0 

of operators {T(t):t 2 0 )  . 
( 2 )  r(z) is a rational function of the complex variable z which 

satisfies 

(a) 

(b) deg r(z) 5 m+l 

(c) r(z) has no poles in {z E C: Re z 5 0) . 

Ie"-r(z)I =0( l z lTn+ ' )  z+O with m > O  

h 

Then there exist positive constants M, E independent of T E G ( M , B )  such 

that the operator r(hT) exists. Moreover for f E Dum+') we have 

for all h with OLh<_ E . 

Remark 3.1 Our concern with the existence of the operator r(hT) is 

necessitated by the fact that r(z)=p(z)/q(z) is a rational function. 

The existence of the operator 

existence of the operator inverse of q(hT) . 
r(hT) is dependent therefore upon the 
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Theorem 3.1 L e t  Z ,  Z N y  5 and PN be as they have been def ined  above 

and l e t  T be a f i x e d  p o s i t i v e  r e a l  number. Suppose f o r  some M , 8  we 

have t h a t  A E  G ( M , f 3 )  i s  the  i n f i n i t e s i m a l  genera tor  of t h e  Co semigroup 

of ope ra to r s  on Z ,  { S ( t )  : t 2 0 )  and % E G ( M , f 3 )  is  t h e  i n f i n i t e s i m a l  

genera tor  of t h e  Co semigroup of opera tors  on X” { S N ( t ) :  t 1 0  1 

N =  1 , 2  .... Suppose f u r t h e r  t h a t  

(1) There e x i s t s  D c D ( A ) ,  a dense subse t  of Z such t h a t  

R ~ ( A ) D  CD f o r  each X E C wi th  ReX > $ and f o r  each z t D we have 

( 2 )  c ( z )  is a r a t i o n a l  fLncticw d t h e  complex v a r i a b l e  zE C 

such t h a t  

(a )  I c ( z ) - e Z I  = 0( lz lm+l)  as z+O wi th  m > O  

(b) deg c ( z ) < m + l  - 
(c )  c ( z )  hes no poles  i n  { z €  C: RezLO)  

(3) {r;r=] is ;f sequence of p o s i t i v e  real  numbers s a t i s f y i n g  

N 
V 

O < r  <_ r < m  N =  1 , 2  ... 
( 4 )  {pyjw is  a sequence of p o s i t i v e  i n t e g e r s  determined by t h e  

N= i 

fo l lowing  r e l a t i o n  

N 
V 

r N N  

N - 5  rv T < ( p  N + I )  y- N = 1 , 2  ... 

Then t h e r e  e x i s t s  an such t h a t  the  ope ra to r s  on XN g iven  by 

c($ AN) e x i s t  f o r  a l l  N > N  and moreover i f  t h e  i n f i n i t e  c o l l e c t i o n  

of o p e r a t o r s  
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h 

are uniformly bounded, then given € > 0 , there exists an N > fi such that 

N 

A 

k = 0 , 1 , 2 . .  . pN for all N > N and each z f 2 . (Equivalently stated: 

N 
N r 

uniformly in k ,  kE { 0 , 1 , 2 . .  . p 1)  
N 

N Proof 

The existence of an i such that the operators c (; A N )  exist 

for all N > fi is a consequence of Lema 3.1. We next assume that the 
N 

k=O 
operators IC ($ %)" 1 N > fi are uniformly bounded. Let Mo be 

such that 

(3.3) 

k = 0 , 1 , 2  . . . p N ,  N > i .  Then for z € Z  and k = O , 1 , 2  . . . p N  we have 

N N 

+ l [ sN(k; )P*-PNs(  k;)]zl N 
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. 

I f  one compares t h e  hypotheses of t h e  present  theorem wi th  those  of 

Theorem 3.1 i n  [7] i t  i s  clear tha t  an a p p l i c a t i o n  of t h e  l a t te r  r e s u l t  

impl ies  t h a t  T 2 + 0  as N + a  uniformly i n  k ,  kE{O,1,2,  . . . p  1 .  
N 
TI . 

N N 

W e  next  consider  t h e  term Applying Lemma 3.1, t h e  f a c t  t h a t  

A , E G ( M , B ) ,  (3.2) and (3.3) ,  t h e  fol lowing estimate can be made. 

A €  C wi th  R e A >  B we have 

For 

N N r N r 

5 Mo 1 [c(# A N )  - SN (+ )ISN( ( k - j - 1 ) 2 )  RA(AN)m+lPNz I N  
j =O 

N r 

N A N  'NZ 

N 
(k-j-1) (A )m+l 

j =O N 

N 
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m+l N 

* m+l 5 M O M X  lzle 
j =o 

where c1 E M q l T  eBT . 
0 

Under the present hypotheses, it is not difficult to demonstrate 

(see Theorem 4.9 of [28]) that for each z € Z and each X E C with' 

ReX > B 

Therefore it f o l l o w s  that 

N m  

+ a l 4 (  $) 
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and hence 

N uniformly i n  k,  kG{O,1,2 . . . p  1 f o r  each z €  R(RA(A)m+l). However, 

R(RA(A)m+l) = D ( A ~ ' )  which i s  a dense subse t  of Z ( see  [23]). Further-  

more t h e  ope ra to r s  on Z given by IC($ A,,)k- s,!'f )] P:: 
k = 0,1,2. .  . pN are uniformly bounded i n  N f o r  a l l  N > . Indeed 

L \ I'( f 

N k  N 
I[C(; A N )  - SN( ';)]PNI 5 M o + M e  BT 

k = 0 , 1 , 2  . . . p N  a l l  N > N  . Therefore 

N uniformly i n  k, kE{0,1 ,2  . . . p  1 f o r  each z E Z  and t h e  theorem is  

proven. 

Remark 3 .2  

t i o n  schemes f o r  t h e  PIDDS, t he  cons t ruc ts  appearing i n  Theorem 3 . 1  t ake  

t h e  fol lowing form. The space Z is  of course R n X  L i  ( - r , O ) ,  

ZN = R' X L2 (-rv , 0) , XN 

t h e  

t akes  (q,$) € Z i n t o  z = (Q,$) i n  Z where $ is  the  r e s t r i c t i o n  of 

$ t o  [-r,,O] and c ( z )  might f o r  example be chosen from among t h e  Pade' 

When a c t u a l l y  rea l ized  f o r  t h e  puspose of developing approxima- 

ZN such as ? n  N 

AVE o r  s p l i n e  subspaces discussed i n  [28], 

i s  a f i n i t e  dimensional subspace of 

I N  i s  the  ope ra to r  t h a t  
- 

N 
N 
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rational function approximations to the exponential (see [28], 

Once a basis for X, has been chosen, can be represented by a matrix 
k N as can the operators c ($ a) k = 0,1,2.. .p  . If the t$ are constructed 

and c(z) 

Theorem 3.1, for z E Z and t = A N E [o,T] 

that z(tk) N = S(t N ) z is approximated by zk N = c (.$ AN) pN z0 . The 

construction of X and A, and the selection of c(z) so as to lead to 

convergent approximation schemes is examined in detail in Section 5. 

[30]). 

is chosen so as to comply with the hypotheses and conditions of 
N krN 

k =  0,1,2.. . p N  we have 
0 k 

rN k 
k O  

N 

Remark 3 . 3  Implicit in condition (1) in Theorem 3.1 above is the 

assumption that P,DC D(%) N =  1,2..,. However, as has been remarked 

above, in practice, 

% : x ” f X N  is a bounded operator with D ( A ~ )  = XN . 
XN is chosen to be finite dimensional in which case 

Remark 3.4 In what is to follow we shall frequently refer to C G(M,B)  

as the spatial stability condition and (3.3) as the temporal stability 

condition. 

It is not surprising that an estimate of the rate of convergence in 

Theorem 3.1 would depend upon both the degree to which the 

A and the degree to which c(z) approximates e . An application of 

Theorem 3.2 of [7] and arguments similar to those used to verify Theorem 

4.17 of [28] can be used to establish the following Theorem. 

A, approximate 
Z 

Theorem 3.2 

that €3 is a subset of D(A )n 2, for which 

Under the hypotheses and conditions of Theorem 3.1 suppose 

2 

(1) For each z € B  there exists a K = K ( z )  such that 
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(2) There exists a subset B1 of B such that for z E  B1 and 

A €  C with ReX> f3 

(a) S(t)zE B t E  [O,T] 

(b) S(t) (XI - A ) z  E 8 t E [O,T] 

and the constants guaranteed by (1) for (a, and (b) are independent of 

t €  [O,T]. 

Then for each z E B1fl D(A&l) for which (XI - A)jz E €3 j = 0,1,2.. .m 

there exist constants K = K  (2) and K2 = K2(z) such that 1 1  

N k = 0,1,2 . . . p  . 

4 .  Approximation Schemes for the PIDDS 

In this section we employ the approximation framework outlined in 

the previous section in order t o  define the approximating parameter 

identification problem. 

appropriately, the solutions to the approximating problems converge to a 

solution of the PIDDS. 

We then go on to demonstrate that if constructed 

Let IT 0 :Z+Rn, IT':Z+L~(-~,O) be the canonical coordinate projections 
2 

0 1 of Z given by IT (rl,$) = n and IT (?I,$) = $ respectively. For {qN} a 

sequence of elements in Q with 
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,O), let l$ = s ( q N )  be a closed subspace of n n N  
= R xL2(-rv - z (q let ZN - 

zN' N N  

respect to the ZN inner product defined by 

N N  

let II, = ll ( q  ) be the orthogonal projection of ZN onto 5 with 

where 

Section 5 ,  and let 1, = T N ( q N ) : Z + Z N  be the mapping which takes (q,($)E Z 

into (q,$) g ZN where $ denotes the restriction of 4 to [-rv,O]. 

gN is a positive weighting function which will be described i n  

N 

Define pN = pN(qN):Z+% by pN(qN) r; nN(qN)lN(qN) and let AN(qN) 

be a linear transformation defined on XN with range contained in XN. 

Finally let c(z) and d(z) be rational functions of the complex 

variable z and let 8 be a fixed positive scalar with O <  - -  8 <  1. With 

these definitions in hand, the approximating parameter identification 

problems can be stated as follows. 

R 
(NPIDDS): Given an input/output pair (u,<) E PCm(O,T) X C  (0,T) for 

subject to 

(4.1) 
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(4 2) 
N j = 0,1,2 ,..., p 

. 

A 4 

where B ( a ) ,  C(a),  D(a) 

a= (q,$,q) = (q,$,a,h) = ( ~ , $ , c i ,  (rl,r2.. .r ) )  and pN is that positive 
r integer for which rv N v  

are as they were defined in Section 2, 

V 

P - < T < (p +1)y . N -  

Under reasonable continuity assumptions (which will be satisfied by 

the specific schemes we construct in Section 5), for each N,  the approximat- 

ing parameter identification problem becomes the minimization of a continuous 

function over a compact set, and hence we are assured of the existence of a 

solution. 

OrV Remark 4.1 The inclusion of the operator d( -A (q)) in the state N N  

equation is a consequence of the theory developed in [28]. In that paper 

it is shown that if d(z) 

to the exponential for which 

(which appear in the statement of Theorem 4.1 below) then the convergence 

is chosen as a rational function approximation 

d( 7 AN(q)) satisfies certain hypotheses 

properties of the state approximation will be enhanced. 

Remark 4.2 If for each q € Q  and N=1,2 ... we define the operators 
B N (q):Rm+XN and A N (q):XN+s by ,B N (q)u = d( Or, yAN(q))PN(q) i(a)u = 

d( OrV yAN(q))PN(q)(B(a)u,O) and A N (9) = c(yAN(q)) V 
r 

respectively and let 
0 j rv 

j N zN(y) = PN(q)(q,$) 

clear that (4.1) is the classical variation of parameters solution to the 

linear non-homogeneous difference equation in XN given by 

and uN = u( -) j =0,1,2 . . . p N  , it is immediately 

N O  with initial condition 

written in the form given by ( 4 . 3 )  and with the exception of the fact 

zo = zN(y) .  Furthermore with the state equation 
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that in its most general form the admissible initial data set is infinite 

dimensional, the approximating parameter. identification problems are 

easily recognized to be in the standard form of a finite dimensional 

discrete linear-least squares parameter identification problem for which 

conventional numerical methods can be used to obtain solutions (see Chapter 

4 of [29]). In practice the compact admissible initial data set S (see 

Section 2) is almost always finite dimensional. In fact, the set S is 

usually chosen to be the span of a finite collection of elements 

{$,,$,. . . ,Jl,)C 2 over a bounded subset of RL where the unknown parameters 

to be determined are the coefficients. 

A 

k * *  * * * *  
Theorem 4.1 

(rl ,r2 ,..., r 
NPIDDS and there exists y = ( z  ,q = (7-1 ,$ ,q = (rl ,$ ,a ,(rl,-- *,rV) 6 r 
such that y N + y  

Suppose {y,) = { (zN O* ,qN *)I = { (qN,$N,qN)} = { ('IN,$N,aN, 

V 
N* N* N* 

) ) )  C r is a sequence of solutions to the problems 
* o* * * * *  * * *  * * 

* *  * *  o* O* in the sense that (a) qN+q in R '+' and (b) zN + z  

* * .  
in Z as N+m. Suppose further that pN = 'N(qN) :'+%(qN) 9 

* * * * N* * 
= $(qN):X N N  (q 1 + X  N N  (q  1, A = A (9 :D C Z + Z ,  ~(2) Ir, I = I(qN)*,I, A N  

N* N* N* * pN*=p (rv ) = p (qN) satisfy the conditions and hypotheses of Theorem 

3 . 1  and that 

(1) The infinite collection of operators 

are uniformly bounded for all N sufficiently large, and 

(2)  For 8 € [0,1] fixed, and each z 6 Z we have that for the 
rN * rational function d ( z )  the operators d ( e  AN(qN)) exist and 

satisfy the condition 
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(4.4) 

Then 

N* 
as N+O0 uniformly i n  k ,  k E  {0,1,2 . . . p  1 where z and zN k are given 

by (2.5) and (4.1) r e s p e c t i v e l y  and t k=  L, k = O , 1 , 2  ... P . N krN* N* 

N 

N* 

The ex i s t ence  of t h e  opera tors  c($AN(q;)) f o r  a l l  N s u f f i c i e n t l y  

Proof 

l a r g e  i s  guaranteed by Theorem 3.1. L e t  Mo be such t h a t  

N* k 
N* r I C (  AN(qi ) )  I N  5 Mg k = 0 , 1 , 2  . . . p  

f o r  a l l  N s u f f i c i e n t l y  l a r g e .  Then 
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N N N  T 1 + T 2 + T 3  . 

N* The t e r m  TY tends t o  0 as N - + ~  uniformly i n  k ,  k E { 0 , 1 , 2  . . . p  

Theorem 3.1 while 

} by 

N* as N -+a uniformly i n  k ,  k E { O , l ,  2 . .  . p 1 .  W e  next  cons ider  t h e  term 

T; . 
N 

TN < r P N ( q ; ) S ( t L - 0 ; q  * A  ) B ( a  * )u(o)do  - 
3 -  

0 
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N* k N* k- j N* r 

j=l  

= T N  + T N  + T N  + T N  + T N  
1 2 3 4 5  

where uNE PCm(O,T) is defined by 

N* k =  1 , 2 . .  . p  
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For each N s u f f i c i e n t l y  l a r g e  and each t E [O,T] w e  d e f i n e  t h e  fol lowing 

parameterized f a m i l i e s  of bounded l i n e a r  .operators  wi th  domain Rn and 

range i n  XN. For q € R n  and t € [O,T], l e t  

N* k =  0,1,2. .  .p 

N* k = O , 1 , 2  ...p 

* 
Using the  f a c t  t h a t  ( S ( t , q  ) : t _ > O )  i s  a Co semigroup of bounded l i n e a r  

ope ra to r s  on Z and Theorem 3.1 i t  i s  not  d i f f i c u l t  t o  show ( see  Lemma 9.1 

of [ 2 8 ] )  t h a t  f o r  each t C [O,T] 

where t h e  norm i n  (4 .51 ,  (4.6) and (4.7) above i s  t h e  one which is  induced 

by t h e  uniform opera tor  topology on ?3(Rn,Z ), t h e  space of a l l  bounded 

l i n e a r  operators  with domain Rn and range i n  . 
N 

zN 
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We now r e t u r n  t o  t h e  terms T N  
J 

s epa ra t e ly  and i n  turn .  Since u€PCm(O,T) i t  i s  therefore Riemann 

j = 1 , 2 , 3 , 4 , 5  and treat each one 

i n t e g r a b l e  on [O,TI and hence 

uniformly i n  

T 

M e B T  (B(a*) 11 lu(0) - uN(0) Ido + 0 as N + 

0 

N* 
k,  k E ( 0 , 1 , 2  ... p 1 .  

A A 

iising ( 4 . 5 )  above w e  have tha t  )ITN(T - 0 )  - SN(T - 0 )  ]I t ends  t o  zero 
A 

f o r  each o E [O,T] as N + ~0 . Moreover ll?,(T - 0 )  - SN(T - 0 )  1 1  is  

dominated by g(0) = 2M e B(T-O) which i s  i n t e g r a b l e  on [O,T]. Therefore ,  

by t h e  Lebesgue dominated convergence theorem w e  have 

. 
T N  = 11- T N ( t k  " N - a ) B ( a  * )uN(a)dcr - 

2 
0 

N 
t: 

'j-1 
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N 

tk 
A * 

= I j ( ? , ( t f :  - a) - SN(tf :  - a))B(a )uN(a)da 

0 
N 

do 

N* B (T-0) 
+ MO as N + m  uniformly i n  k,  k E { 0 , 1 , 2  ... p 1 .  Using ( 4 . 6 ) ,  g ( a ) = M e  

and reasoning similar t o  t h a t  used above w e  have 

'j-1 
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N* 
as N + a  uniformly i n  k,  kE{O,1,2 ...p 1 .  Using (4.7) we have 

' N  

N 

N* uniformly i n  k ,  k €  { 0 , 1 , 2  ...p 1 .  F i n a l l y ,  r e c a l l i n g  t h a t  B has been 

assumed t o  depend cont inuously upon t h e  parameters,  w e  have 

. 

rN* k < L E  
- N  j=1 



32 

N* uniformly in k, kE{O,1,2 . . . p  } where M1 is the uniform bound on the 

operators d (' AN(qi)) guaranteed to exist by the strong convergence 

condition given in ( 4 . 4 ) .  

r N* 

Theref ore 

T! = T ~ + T ~ + T ~ + T ~ + T :  N N N N  -+ o as N -f 03 

N* uniformly in k, k E { O , l ,  2.. . p } and the theorem is proven. 

Lemma 4.1 If, under the hypotheses and conditions of Theorem 4.1 we have 

in R" as N + O ~  for each z € Z . Then 

N* as N-fm uniformly in k, k€{0,1,2 . . . p  } where for each y 6 r  , 

uE PCm(O,T), k €  {0,1,2 . . . p  } and all N sufficiently large 

y(tk;y,u) is given by (2.9) and yk(y;u) is given by (4.2). 

N* 

N N 

Proof 
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N N N N  E T 1 + T 2 + T j + T 4 .  

In light of the convergence guaranteed by Theorem 4.1, it is easily 

PN* 
N k=O 

lie in a bounded subset of R which verified that { I zk(yN;u) N *  I 1 

. 
is independent of N for all N sufficiently large. Therefore using 

the assumptions that a -+ a in R' as N + o o  and C(a) and D(a) * * 
N 

depend continuously upon the parameters we have TY -+ 0 and T4 N + 0 as 

N + a  uniformly in k, kE{O,1,2 . . . p  N* 1 .  The term T2 N tends to zero as 

N + 03 uniformly in k, k E 0,1,2, pN*) 

Finally (4.81, the fact that the set 

subset of Z (being the continuous image of a compact subset of R) and 

as a consequence of Theoren 4.1. 
* 

S-(z(t;y ,u):tE [O,T]) is a compact 

the uniform boundedness of the operators n0PN(qN) * imply 7~ o * o  PN(qN) - t n  

uniformly on S as N+m and hence TY -f 0 as N+w uniformly in k, 

kE{O,1,2 . . . p  1 .  N* 
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We can now state and prove the major result of this paper which is 

that in a certain sense (which will be made precise in the statement of 

Theorem 4.2 below) a solution yN to the Nth approximating parameter 

identification problem is in fact an approximation of a solution y of 

the PIDDS. 

* 
* 

* o* * Theorem 4.2  Suppose {y,} = {(zN,qN)} C r is a sequence of solutions 

to the problems NPIDDS. 

subsequence { y  of {yNr such that y -t y as k+m in the sense 

that (a) qN + q* in Rut' and (b) z + z 

in addition - 

p (q ) satisfy the hypotheses and conditions of Theorem 4.1 and if 

P (q ) satisfies ( 4 . 8 )  then y is a solution of the APIDDS (and therefore 

to the PIDDS as well). 

* * 
Then there exist a y = (zo*,q ) 6 I' and a 

* *, * * 

in Z as k+m . If 
* Nk o* Nk o* 

k * * Nk * N* - P N = P  (q ), A, = AN(qN), A=A(q ), c(z), d(z) and p N N  
N* * 

N * * 
N N  

Proof 

Since S C Z  has been assumed compact, there exists a subsequence 

of (2, O* such that z:* -+ z o * €  S as j + m  . Similarly Q C R  lJ+V 

j j * * 
* * * * Jl j 

jl * * * * 

{ ZN 

compact implies the existence of a subsequence {qN. Of {qN such that 

qN -+ q E Q as a - + m  . Letting y =(zo*,q ) and reindexing, we obtain a 

subsequence {y of {yN} such that y -+ y E r as k-+m . 
Nk 0 0 Nk L 

rv>> E r ,  u E PC~(O,T), 5 E c (0,~) For each Y = (2 , q >  = (z ,a, (rl,r2.. . , 
N A N  N 4 and all N sufficiently large we define y , y , < 6 PC ( 0 , T )  by 

N N N N N Y ( 0 )  = Y (o;Y,u) = Y(tk;Y,u) a61k k=O,1,2 ... p 

AN *N N N N a €  Ik k=0,1,2 ... P Y ( 0 )  = Y (o;u,u) = Yk(Y;u) 
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tk=tk(y) N N  = krV - k = O , 1 , 2  . . . p N  and pN is where IN k k  = I N ( Y )  = [t:, tR1) N 

and where y(*;y,u) and 
N . 'V 

pN N -  < T <  (p + 1 ) ~  that integer for which 

y.(y;u) 
N are given by ( 2 . 9 )  and (4 .2 )  respectively. 

If {y 1 is a sequence of elements in I' for which y, +y E I' then N 

Lemma 4 . 1  implies 

as N + w  uniformly in U for a €  [O,T]. Furthermo e the continuity of 

y(*,y,u) and < ( e )  and the fact that length(1 ) = N - N  < -+ 0 as 

N + m  imply 

B r N 
k 

and 

for ea'ch u € [O,T]. 
^N y (a;yNYu) + y(Cr;y,u) for each U E  [O,T] and hence by the Lebesgue 

Dominated Convergence Theorem we have for any 

The triangle inequality, ( 4 . 9 )  and (4 .10 )  imply 

y €  r 
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Nk * 2 

k + w  Nk 1 
= lim [Yo (Y ;u) - 3(0)  I, + 
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NZ Nc 
r p - 1  

Nk j = O  
+ -  " c  

* 
= lim J (Y ) 

k + w  Nk Nk 

r p -1 
V 

= lim 
k+m 

Nk 

+ y-' 
j =O 

2 +  
w1 

+i 0 
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* * 
Thus J ( y  ) f J (y)  for any y E and y is a solution to the APIDDS. 

5. Examples of Convergent Approximation Schemes for the PIDDS 

In this section we construct specific examples of convergent approxima- 

tion schemes for the PIDDS. That is, given a sequence {q,) CQ with 

qN + G € Q  as N + Q )  , for each N = 1 , 2  ... 
space of 

ZN onto XN, linear operators AN(qN):S + XN 

functions c(z) and d(z) 

theorem 4 . 2 .  We require 

we define XN , a closed sub- 
n n N  ZN = R  X L 2 (-rv,O), l lN:ZN + 5 the orthogonal projection of 

and choose rational 

which satisfy the hypotheses and conditions of 

( 5 . 1 )  There exist constants M and such that AN(qN) € G ( M , B )  

on XN for all N sufficiently large and 

on Z. 

A = A(4) € G(M,B) 
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(5.2) There exists a dense subset of Z, D C D ( A ( 4 ) )  such that 

RX (A(4))D C D for each X € C with Re X > f3 and for each 

Z E D  we have 

=II I I A  N N N  (q )P z-PNA(;)zIN+O as N - + w  where 'N N N '  

(5.3) T 0 P Z+IT 0 z for each 2 6 2  where r0:[>Rn is defined by 
N 

0 
-T (rl,$) = r l  - 

(5.4) c(z) is a rational function approximation to the exponential 

for which 

(a) Ic(z)-eZI =O(~Z/~+') as z + 0 with m > 0 

(b) degc(z)< - m+l 

(c) c(z) has no poles in Iz € C:Re z - < 0). 

(d) There exists a constant Mo such that 

is 
N 

for all N sufficiently large where p 

N v  that positive integer for which p TL, < T <  (p +I), 
N r 

N -  

(5.5) d ( z )  is a rational function approximation to the exponential 

for which 17 
11 

(a) the operators d (  e 2 A N ( q N ) )  exist f o r  all N 

sufficiently large 

where O <  - 05 1 .  
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For a given choice of XNy EN, A N ( q N ) ,  c(z) and d(z), the triple 

{X II A (q ) I  will be referred to as the state approximation, while 

the collection { X N , l l N , A N ( q , )  , c(z), d ( z )  

as an approximation scheme. 

of state approximations which can be shown to satisfy conditions (5.1), 

(5.2) and (5.3) above. The first, and more primitive of the two is the 

averaging or AVE state approximation ( [ 4 ]  , [ I S ]  , [7] , [28]) in which the 

functional component of the subspace 

finite collection of piecewise constant functions defined on [-r ,O] . 
The second family of state approximations is spline based and is known 

as the SPL state approximation ([7], 191, [28]).  

space XN 

ZN having first or higher order spline functions as their functional 

component. We note that in both the AVE and SPL state approximations 

XN is finite dimensional. 

N ’  N ’  N N 

itself will be referred to 

We shall consider two particular families 

XN is chosen to be the span of a 

N 
v 

In this case the sub- 

is chosen to be the span of a finite collection of elements in 

Once a state approximation has been set, rational functions c(z) 

and d(z) must be chosen in order to complete the construction of the 

approximation scheme. Although others are available, we shall restrict 

our attention to choices of c(z) and d ( z )  from the Pad6 table of 

rational function approximations to the exponential ([28] , [ 3 O ] ) .  

shall demonstrate that for appropriate choices for c ( z )  and d(z) 

taken from the Pade’ table, the AVE and SPL state approximations generate 

approximation schemes which satisfy conditions (5.1) through (5.5) above 

and hence yield approximate solutions to the PIDDS. 

We 
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All of the ideas discussed in this section have appeared elsewhere. 

In particular, since our discrete schemes are based upon the semi-discrete 

approximation schemes for the PIDDS developed by Banks, Burns and Cliff 

[7Iy the AVE and SPL state approximations are the same as those used in 

[7] 

based upon the discrete approximation framework for the integration of 

LRFDE initial value problems developed in [28], the theory underlying 

the appropriate choice of the rational functions c(z) and d(z) can 

be found in [28]. 

the choosing of the rationai functions and the arguments used in the 

verification of conditions (5.1) through (5.5) for the particular schemes 

will only be outlined and summarized here. 

of the various constructs which we define and the verification of the 

many results which we state without proof, the interested reader is 

advised to consult [7] and [28]. 

for a similar purpose. Furthermore, since our schemes are also 

Therefore, the construction of the state approximations, 

For a detailed explanation 

Central to our discussion of the state approximations will be the 

notion of dissipativeness of an operator. 

T:D(T)CH -+ H with dense domain and range in a Hilbert space H is 

said to be dissipative if 

A closed linear operator 

Re< Tf, f > <  - 0 

for each f€D(T). 

tive if it does not have a non-trivial dissipative extension. 

either H is finite dimensional or T is bounded then if T is dissipa- 

tive it is maximal dissipative. 

theory ([20], [21] 

inner product on H equivalent to the standard inner product 

A dissipative operator is said to be maximal dissipa- 

Clearly if 

Standard results from linear semigroup 

1231) can be used to show that if there exists an 
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on H (with mll-I - < / . I l  5 m21 I )  for which the operator T-BI is 

maximal dissipative for some B then T is the infinitesimal generator 

of a Co semigroup of bounded linear operators on H, (T(t) :t _> 0 )  such 

m2 eBt . That is T F G ( M , B )  on H where M = - that IT<t)l < - 

For q=(a,rlyr2, ... rv)fQ we define the weighting function 

m2 

- ml 1 m *  

g(.;q) on [-rYO] by 

-r < 8 < -r v-1 

-r < 8 < -r 

- 

v-1 - v -2 

1 -r < 8 < -r 2 -  

-r < 8 < 0  1 -  - 

z y  <.'.'q by 
and the inner product on 

0 

-r 

It is easily seen that the 

to the standard inner product on Z. In fact we have 

q-inner product defined above is equivalent 

(5 7) 

If we recall the definitions of A ( q )  and L(q) given in section 2 

using arguments similar to those found in [9] 

that for q € Q  and z€D=D(A(q)) 

and [28] it can be shown 
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(5.8) 

. 

where 

(5.9) 

v 0 

Since Q is a compact subset of R'" and the system coefficients have 

been assumed to depend continuously upon the parameters we have that there 

exists a B > O  such that w(q) < B for all q € Q .  It is also not 

difficult to show (see 11251) that for 

and hence by Theorem 1.4.3 of 1211 we have that 

dissipative operator on Z for all q E Q .  In light of our earlier 

remarks, it therefore must hold that 

- 

X E C with ReX > B ,  R(A(q) -XI) = Z  

A(q)  - BI is a maximal 

A(q)  E G(6,B) on Z for all q E Q . 

Remark 5.1 While we have defined A(q )  to be a mapping from D C Z 

into Z for each q € Q ,  it can also be defined as an operator from 

D(A(q) C Z q  into Z where Z = R  XL2(-r,,,0) and n n  
9 4 " 

In both cases A(q )  ($(O) ,$) = (L(q)$,D$) where in the first case D$ 

is defined on [-r,O] and in the second case on [-r 01. In either case, 

however, the two definitions lead to essentially the same operator and 

hence we use them interchangeably. 

V'  

5.1 The AVE State Approximation 

N N  N 
V Let {qN} = (aN,rl,r2,. ..r ) I  CQ be given with qN+-GE Q . Define 

be the characteristic function of the interval 

j = 2 , 3 , .  . .N and xN to be the characteristic function 1 
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N 

of the i n t e r v a l  [ 2 , 01 . L e t  XN be t h e  c losed  subspaces of 

n n N  Z = R  xL2(-rv,0) given by 
N 

N 

With XN as above, t he  or thogonal  p r o j e c t i o n  ITN of ZN on to  % with  

r e spec t  t o  the  s tandard innerproduct  on can be computed and is  given ZN 

i N \ 

where 

I n  o rde r  t o  def ine t h e  opera tor  AN(qN) we  f i r s t  d e f i n e  t h e  ope ra to r s  

N v N  

N N 
j=l J N j  

rN N ++ K.(a )v 

and 
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. 

Dl 

N N 
N N  

j=l j=l r v 

- where v0=q respectively. Let A (q ):XN+XN be given by N N  

N N N 

N N V  N V 
i 

jv=N and ji i s  N Let JN = {jl,...jv-l} be an index set where 
rN rN 

the index such that -r 6 [-ji N - (ji - 1) N] i = 1,2.. .V - 1 . 
the numbers (a.1 

Define 

N by the following recurrence relation. Let aN=l N N  
J j=1 

and 

if j E JN 

We next define the piecewise constant weighting function gN(*;qN) by 
. rN N 

-aN for -JJ < e < -(j")rv - 
gN(';qN) - j N -  - N j = 1,2.. .N and define the inner- 

The <*;> innerproduct is equivalent to the standard innerproduct 

on ZN and in fact 
gN 

(5.11) 
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It can now be shown (see [7]) that for 

above and 

AN(qN) as it is given in (5.10) 

z %  

(5.12) 

where w ( q )  is given by (5.9). Since % is finite dimensional and 

therefore D(AN(qN)) = XN we have AN(qN) € G(fi,B> N = 1 , 2 . .  . and 

condition (5.1) is satisfied. In addition it can also be shown (see 

[25] ) that 

(5.13) 

where ci is a constant independent of N and q S Q .  The bound given 

in (5.13) is a somewhat stronger result than dissipativeness in that 

(5.13) implies (5.12) with B =  (see Lemma 5.15 of [28]). The 

importance of condition (5.13) will become clear when the choosing of 

the rational function c(z) is discussed in Subsection 5.3. 

ci 

If we let D = { ( $ ( O ) , $ )  E Z l 4 E  Cy(-r,O)}, then D is a dense subset 

of Z , D  C D = D ( A ( G ) )  and for x6C with ReX>B we have Rx(A(q)DC 

D(A2($) C D .  Moreover, it can be shown (see 171) that for z E D 

and condition (5.2) is satisfied. 

Finally, f o r  (rl,$) € Z we have 

N 

j=l 
N N  0 

and hence we have that conditions (5.1), (5.2) and (5.3) are satisfied 

for AVE state approximation. 
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5.2 The SPL State Approximation 

In this subsection we describe spline based state approximations 

All of the results stated below using first order or linear splines. 

can be modified so as to be applicable to spline based state approximations 

employing higher order splines. 
N N  N Once again we assume qN} = { (aN,r1,r2,. . .rv)} CQ with qN+ E Q 

N N  as N + m  . We partition each of the subintervals [-rk,-rk-l] k = 1,2.. .V 

into N equal subintervals to define the partition {eN)VN of 
J j=1 

[-r", 01 where 

j = (k-l)N, . . . k N ,  k=1,2 ... V, 

XN of ZN by 

and define the finite dimensional subspace 

% =  [(@(O),$) € ZN I @ is a first order spline with 
N V N  I 

I '  J j=1 
knots at {e. 1 

We let n, be the orthogonal projection of ZN onto XN with respect 

to the < e , - >  innerproduct defined in (5.6). Finally we let 

A N ( q N ) : % + X N  be given by 
q N  

We note that 

and hence the expression for AN(qN) given by (5.14) is well defined. 
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Using (5.8),  (5.14) and t h e  f a c t  t h a t  IIN i s  t h e  or thogonal  p r o j e c t i o n  

of ZN onto X wi th  r e spec t  t o  t h e  < : , e >  i nne r  product we have f o r  

a l l  z E X N  
QN N 

where once again W (9) i s  given by (5.9). Since XN i s  f i n i t e  dimensional 

wi th  D(%(qN)) = XN w e  have t h e r e f o r e  t h a t  

and condi t ion  (5.1) i s  s a t i s f i e d .  

%(qN) E G ( 6 , B )  N = 1,2. .  . 

Next, i f  we de f ine  D = D ( A 3 ( q ) ) ,  we have t h a t  D i s  a dense subse t  

of Z ( s ee  [23]) and f o r  E C wi th  Rex > B ,  Rx ( A ( 4 ) )  DC 0. Using t h e  

p r o p e r t i e s  of i n t e r p o l a t o r y  s p l i n e s ,  t h e  f a c t  t h a t  i s  a n  or thogonal  

p ro jec t ion  (and hence has  c e r t a i n  minimali ty  p r o p e r t i e s )  and t h e  norm 

equivalence r e l a t i o n  

nN 

(5.16) 

given by (5.7) i t  can be shown t h a t  

I %(qN)’NZ - PNA(;i)ZI N as + 

h 

f o r  each z € D. 

ITININ@ - -+ 0 as N -+ w .  However D i s  a dense subse t  of Z and 

the  ope ra to r s  {lTNIN - IN) are uniformly bounded. Reca l l ing  t h a t  

’N N N 
z E  Z .  This  i n  t u r n  impl ies  t h a t  

Furthermore i t  can a l s o  be argued t h a t  f o r  @ € D , 
A 

=TI 7 i t  follows the re fo re  t h a t  I PNz - 7, z I + 0 as N + O3 f o r  a l l  
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I .  

for all z € Z  and the SPL state approximation defined above satisfies 

conditions (5.1) , (5 .2 )  and (5.3). 

5.3 Selecting the Rational Functions c(z) and d(z) 

Our primary objective in this subsection is to summarize the theory 

developed in [28] for the selection of rational functions 

which satisfy conditions (5.4) and (5.5) respectively for a given state 

approximation triple For a given approximation scheme 

{ X N , I I N , A N ( q N )  ,c(z) ,d(z)} the most difficult condition to verify is the 

temporal stability condition ( 5 . 4 ) ( d ) .  As we shall soon see, it is the 

happy circumstance that the relatively easily verified spatial stability 

condition (5.1) (which we already know is satisfied by the AVE and SPL 

state approximations) is, under the appropriate hypotheses, sufficient 

to guarantee that (5.4)(d) holds as well. 

c(z) and d(z) 

{ X  ,11 , A  (q ) ) .  N N N N  

Definition 5.1 

variable z is acceptable if 

We shall say that a rational function r(z) of the complex 

z€{zEC:Rez < 0 )  . - 

are many families of rational functions which admit 

acceptable subclasses, among the most widely studied are the Pad6 

rational function approximations to the exponential. Tine Pad6 approxima- 

tions, which can be arranged in a tableau {p. (2)) commonly referred to 

as the Pad6 
Jk 

table, are defined by the following formulae 



5 0  

p. (z)=n. (z)/d. ( z )  j, k = 1 , 2  ... 
Jk Jk Jk 

where 

It is easily seen that 

(5 .17 )  

and it can be shown that 

( 5 . 1 8 )  

Since the convergence rate estimates given in Theorem 3 . 2  are dependent 

upon the degree to which the rational function c(z) approximates e 

and since the Pad6 approximations approximate e to an arbitrarily 

high degree, in this presentation we are content to restrict our attention 

z 

z 

to them alone. For a discussion of other families of rational function 

approximations to the exponential which could be employed see [28]. 

The following result due to Ehle 1151 identifies an acceptable sub- 

class contained in the Pad6 approximations. 

Theorem 5 . 1  

table of rational function approximations to the exponential are acceptable. 

That is, the collection of rational functions given by 

The diagonal and first two subdiagonal entries in the Pad6 
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. 

is an acceptable subclass of the Pad6 approximations. 

To this author’s knowledge, it has not as of yet been demonstrated 

that Theorem 5.1 above identifies the entire acceptable subclass contained 

in the Pad6 approximations. Ehle [15], and more recently, other authors 

(see [28]) however, have provided evidence to the fact that this is indeed 

the case. 

From Definition 5.1, (5.17), (5.18) and Theorem 5.1 it is immediately 

clear that the rational functions contained in the class d 
P 

conditions (5.4)(a), (b) and (c). We next turn our attention to the 

temporal stability condition (5.4) (a). 

satisfy 

The following definition and result due to J. von Neumann [26] will 

prove useful in our discussion below. 

Definition 5.2 A set ZCC (completed by the point at infinity) will 

be called a Spectral - Set for the bounded linear transformation 

the Hilbert space H if (a) it is closed, (b) Z 2 O(t) and (c) for 

every rational function u(z) satisfying the inequality lu(z)l 5 1 

for all z E Z we have that lu(T) I 1 . 

T on 

Remark 5.2 In Definition 5.2 above, the conditions Z 3 - O(T)  and 

lu(z) I <_ 1 for all z E Z guarantee the existence of the operator u(T). 

Theorem 5.2 A necessary and sufficient condition that the halfplane 

{z€C:Rez < - 0 )  

T is that T be a maximal dissipative operator on H. That is 

Re <Tf,f> < - 0 for all f EH. 

be a spectral set for the bounded linear transformation 
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The next  lemma due t o  Hersh and Kato [18] provides  t h e  necessary l i n k  

between t h e  ideas of a c c e p t a b i l i t y  and s p e c t r a l  sets. 

r e s u l t  i n  the  form i n  which i t  i s  s t a t e d  below can be found i n  [28]. 

The proof of t h i s  

Le- 5.1 { z  E C:Re z <  - 0) is  a s p e c t r a l  set f o r  t h e  ope ra to r  

T -  61 where b > O  and T is  a bounded l i n e a r  ope ra to r  on a H i l b e r t  

space H .  Suppose f u r t h e r  t h a t  r ( z )  i s  an  acceptab le  r a t i o n a l  func t ion .  

Then 

Suppose 

where k is a p o s i t i v e  cons tan t  independent of h and T .  

Lemma 5.1 can now be used t o  determine an  appropr i a t e  choice f o r  

c ( z )  f o r  t h e  AVE and SPL state approximations. 

Theorem 5.3 

t i o n  t r i p l e .  Then i f  c ( z )  €-& condi t ion  (5.4) is  s a t i s f i e d .  

Let {$,nN,AN(qN)l be e i t h e r  t h e  AVE o r  SPL s ta te  approxima- 

P ’  

Proof 

We need only t o  demonstrate t h a t  cond i t ion  (5.4)(d)  ho lds .  Using 

r e s p e c t i v e l y  (5.12) and (5.15) f o r  t h e  AVE and SPL s ta te  approximations 

w e  have f o r  Z E X N  

and 
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I n  e i t h e r  case, the re fo re ,  we  have by Theorem 5.2 t h a t  { z E C:Re z < - 0) 

is  a s p e c t r a l  set f o r  AN(qN) . Theorem.5.1 and c ( z ) € @  imply t h a t  

c ( z )  i s  acceptable .  Thus, by Lema 5.1 we  have 

P 

i n  t h e  case of t he  AVE state  approximation, and 

f o r  t he  SPL s ta te  approximation. Reca l l ing  t h e  norm equivalence r e l a t i o n  

(5.11),  f o r  t h e  AVE s t a t e  approximation we have f o r  

kE (0 ,1 ,2  . . .p  1 

z E  XN and 

N 

. 

. and hence 
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In a similar manner, using the norm equivalence relation (5 .16) ,  the 

same bound can be shown to hold in the case of the SPL state approximation 

and the theorem is proven. 

Remark 5.3 

approximations directly, we could have used it to establish a somewhat 

more general result. 

tion {s ,TIN,4N(qN)} and acceptable rational function c(z), Lemma 5.1 

implies that condition (5 .4) (d)  is satisfied. That is the resulting 

approximation schemes {s,TIN,%(qN) ,c(z) ,*I will be temporally stable. 

c(z) E d ,  Theorem 5.3 

Rather than applying Lemma 5.1  to the AVE and SPL state 

Indeed, for a given spatially stable state approxima- 

For the AVE and SPL state approximations and 
P 

quarantees that it is possible to construct an approximation scheme 

satisfying conditions (5 .1) ,  (5.2),  (5.3) and (5.4).  However for 

c(z) = r(z)/s(z) €d 
N P 

it will be necessary to compute s(% %(qN))- l  . Furthermore, in order 

to increase the estimated rate of convergence, we must increase 

we must have that deg s ( z )  > 0 . This implies that 

degs(z) , 
and hence be required to invert a relatively high degree polynomial in 

the operator 

and should,if possible, be avoided. In the case of the AVE state approxima- 

rN 
$ $ (qN) . This is a numerically illconditioned procedure 

tion this can be achieved. Let 

The collection &$' consists of the top row of the Pad; table whose 
P 

entries are the Maclaurin polynomials for e 2 . .We note that & n dp = @ 
P 

and observe that &$' 
P 

the Pad6 

consists of precisely those rational functions in 

table for which no operator inverse need be calculated in the 
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. 

computation of pjk N 4 (q ) . Indeed, choosing c(z) from .k$ (r' N N 

results in an explicit approximation scheme, where as choosing 

from d results in an implicit approximation scheme. 

c(z) 

P 
It can be shown (see [28] Theorem 5.17) that if 

for some a > 0 independent of N and some norm 11 11 equivalent to the 
standard norm on XN (with norm equivalence constants independent of 

Nj then there exists an G = G ( l )  i 0 such iiiat 

Therefore, in light of (5.13), arguing as we did in the proof of Theorem 

5.3 the following result can be established. 

Theorem 5.4 

(5.4) is satisfied. 

For the AVE state approximation and c(z)E T ,  condition 

In [28] a heuristic argument in support of choosing d(z) as a 

rational function approximation to the exponential is given. 

argument is borne out empirically in that in numerical tests, enhanced 

convergence properties are observed for schemes constructed with d(z) 

chosen in this way. Therefore we want to choose d(z) as a rational 

function approximation to the exponential for which condition (5.5) is 

satisfied. d(z) 

is chosen to satisfy condition (5.4) it will satisfy condition (5.5) as 

well. For the AVE state approximation, therefore, d(z) can be chosen 

from &us, while for the SPL state approximation 

This 

It is easily verified (see 1281 Theorem 10.3) that if 

d(z) can be chosen 
P P  
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from d . 
tion d(z) can actually be chosen from dc"g and still satisfy 

condition (5.5). 

However, it is shown in [28] that for the SPL state approxima- 
P 

P P  

Finally, we can summarize the results of this section as follows. 

For an approximation scheme (s,IIN,AN(qN) ,c(z) ,d(z)) constructed with 

the AVE state approximation and c(z) and d(z) 

conditions (5.1) through (5.5) will be satisfied and a sequence of solutions 

to the resulting sequence of approximating parameter identification 

problems will contain a subsequence converging to a solution of the PIDDS. 

A similar statement can be made for approximation schemes constructed with 

the SPL state approximation, c(z) chosen from d .and d(z) chosen from 

chosen from & U.k$ , P 

P 

6 .  Numerical Results 

In this section we discuss and analyze numerical results obtained by 

implementing the approximation schemes developed in the previous sections 

and then applying them to actual.parameter identification problems in 

which the governing control system is a linear functional differential 

equation of retarded type. All of the examples which follow were run on 

an IBM 370/158 computer using software packages written in Fortran. 

provide no information regarding storage requirements or computational 

efficiency in that our primary objective in performing these tests was 

to demonstrate the feasibility of our methods. 

We 

The approximating parameter identification problems given in Section 

4 were constructed using the AVE and SPL (linear spline based) state 

approximations defined in Section 5, 

and 8 = .5. The effect of variation in the choice of c(z), d(z) and 8 

c(z) =-P~~(z) €dP, d(z) =P~,~(Z) €3 
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were not tested here since this was studied in [28]. 

that we have been given observational data on the interval 

resulted from input u = u  G P C  (0,2) where 

We have assumed 

[0,2] which 

1 
R 

The norms 

t n  he the standard Euclidean n n m  en 

I ' I w  , I I w  , I 1, which appear in (2.1) have all been taken 
1 2 3 

E? e . To obt2 in  observatimal dsts 

5 

of steps [16], a fourth order Runge-Kutta numerical integration scheme 

for each example the state equation was integrated using the method 

for ordinary differential equation initial value problems, and a pre- 

selected set of true parameter values y = (rl ¶$I ,a ,h >. We emphasize * * * * *  

that the integration method used t o  obtain the observational data was 

completely independent of the approxi 

should not have contaminated our resu 

The resulting finite dimensional 

ation schemes being tested and hence 

t s .  

approximating parameter identification 

problems were solved using a modified version of the integration package 

for LRFDE initial value problems developed in 1283 and the IMSL [19] 

routine ZXSSQ , a finite difference Levenberg-Marquardt scheme for solving 

the problem of minimizing the sum of squares of M non-linear functions 

in N -unknowns. The Levenberg-Marquardt algorithm is an iterative gradient 

projection scheme which must be provided with an initial estimate of the 

unknown parameters. 
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Since among the principal advantages of our approximation schemes 

is their ability to identify the delays,.it is this feature which we 

are most interested in testing. 

below, therefore, all have the delays in the problem among the parameters 

to be identified. 

examples in which the delays need not be identified can be found in [ll]. 

The examples which have been included 

A discussion of the performance of the schemes on 

Two of the four examples which appear below have also been included 

in [6] where they are used to test the semi-discrete schemes developed 

in [7] .  A comparison of the performance of the two methods (based upon 

the two examples below, and others not included here) reveals that they 

exhibit similar behavior. The similarity becomes especially apparent 

for the cases N =  16 and 32,  at which point the 2 time step in the 

totally discrete schemes becomes comparable to the 1 / 3 2  time step used 

in the integration of the resulting approximating ordinary differential 

equation in the semi-discrete schemes. In addition, as N increases, 

the number of observational data points, 

schemes increases and becomes comparable to the 101 (N independent) data 

points used in the testing of the semi-discrete schemes in [6]. 

interesting to note that a reasonably good fit can be achieved using 

relatively few observations. 

rN 
N 

pN used by the totally discrete 

It is 

Example 6.1 (Banks, Burns, Cliff [ 6 ]  Example S 2.2) 

In this example we identify the time delay r in the scalar first 

order equation given by 

(6.1) &(t) = .05x(t) - 4.0x(t-r) +u ,(t) 

with initial condition 



and output 

N 

2 
4 
8 
16 
32 
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x(0) = 1.0 xo(s) = 1 -rL s <  - 0 

AVE SPL 

.976458 .982173 
1.11242 .9848 18 
1.08012 .984677 
1.04227 .996628 
1.10351 1.00126 

r =1.0 r =1.0 
* * 

Observational data was generated by using a true parameter value of 

r = 1 . 
In Table 6.1 below, for each N and each state approximation we give 

the final converged value for the parameter as returned by the routine 

ZXSSQ as a solution to the approximating parameter identification 

problem . 

* 
The initial estimate of the parameter was taken to be rN9' = .6 . 

Based upon the numerical results discussed in [28], it is not 

surprising to find the performance of the SPL state approximation 

superior to that of the A V E .  

1 I I I 

Table 6.1 



60 

2 

4 

8 

16 

32 

Example 6.2 

I n  t h i s  example w e  cons ider  t h e  state equat ion  (6.1) ,  i n i t i a l  d a t a  

(6.2) and output (6.3) of Example 6.1 

Did Not Converge Did Not Converge 

4.59759 1.20779 4.13681 ,991267 

Did Not Converge 4.09309 .987206 

4.17380 1.04557 4.02157 .996570 

4.06641 1.02561 3.99287 1.00124 

x ( t )  = . 05x( t )  - a lx ( t - r )  + u  , ( t )  

-r< s <  0 x(0)  = 1 xo(s) = 1 - -  

and i d e n t i f y  the c o e f f i c i e n t  al of t h e  de l ay  t e r m  and t h e  de l ay  r 

i t s e l f .  The t r u e  va lues  of t h e  parameters  were taken  t o  be a l = 4 . 0  

and r = 1 r e s p e c t i v e l y  with start up va lues  g iven  by a:’’= 3.0 and 

rN”= . 6 .  

* 
* 

Our r e s u l t s  are summarized i n  Table 6.2. 

I I I 
N I  AVE I SPL I 

r* = 1.0 al = 4.0 I *  a; = 4.0 r* = 1.0 I 
I I 1 

Table 6.2 c 

Example 6.3 (Banks, Burns, C l i f f  [d] Example 01.2) 

I n  t h i s  example we  i d e n t i f y  t h e  t i m e  de l ay  r i n  t h e  damped 

harmonic o s c i l l a t o r  wi th  delayed damping and delayed r e s t o r i n g  f o r c e  

given by 
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c 

( 6 . 4 )  G(t)  + 3 6 x ( t ) + 2 . 5 i ( t - r )  +9 .Ox ( t - r )  = u e 1 ( t )  

toge ther  wi th  i n i t i a l  condi t ions  and output  given by 

( 6 . 5 )  x(0)  = 1 i ( 0 )  = 0 

and 

r e spec t ive ly .  The i n i t i a l  value problem ( 6 . 4 ) ,  ( 6 . 5 ) ,  ( 6 . 6 ) ,  ( 6 . 7 )  can 

be w i r t t e n  as an equiva len t  first order  system: 

i ( t )  = [ O '1 X(t)  + [ O O ] X(t-r)  + [ :] u .1 ( t )  
-36 0 -9.0 -2.5 

* 
The t r u e  parameter value was taken t o  be r = 1 . 0  wi th  start up 

va lue  given by 

i n  Table 6 . 3  once again e x h i b i t  t h e  f a c t  t h a t  t he  SPL schemes are supe r io r  

t o  t h e  AVE. 

rNSo = 1.2.  Our r e s u l t s  f o r  t h i s  example, which are given 



62 

N 

2 

AVE SPL 

Did Not Converge 1.05621 

r* = 1.0 r* = 1.0 

Table 6.3 

Example 6.4 

Here we once again consider the state equation (6.4), initial conditions 

(6.5), (6.6) and output (6.7) and identify the coefficient of the restoring 

force term and the time delay. Written as an equivalent first order system, 

the state equation, initial conditions and output are given by 

Y(t> = p,O] X(t>. 

respectively where X(t) = 

* * The true parameter values were taken t o  be w =6.0 and r ~ 1 . 0  with 

start up values given by uNSo = 5.0 and r N s o  = 1.2 respectively. Our 

results for this example are summarized in Table 6.4. 
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N AVE 

2 4.53647 1.16643. 
4 6.28624 .895982 

8 Did Not Converge 

16 6.07952 1.04665 

w =6.0 r =1.0 
* * 

SPL 

6.26975 1.00952 

6.34399 .921017 
6.05748 .985784 

6.01031 .997449 

w =6.0 r =1.0 
* * 

Table 6.4 

In this example, as was the case in all multi-parameter, higher 

dimensional examples we studied, the  SPL schemes performed iar bet te r  

than the AVE. In fact, even for large values of N ,  it was not uncommon 

for the SPL schemes to converge while the AVE schemes did not. In all 

examples studied, for N sufficiently large, the SPL based schemes would 

always produce a solution to the approximating parameter identification 

problem. Moreover, as N increased, the solutions to the approximating 

problems appeared to be converging to the true parameter values used to 

generate the observational data. 

c 

n 
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